SYNTHESIS AND ANTIMICROBIAL ACTIVITIES OF 5-(2', 5'-DISUBSTITUTED1H- INDOL-3'-YL)-5H-THIAZOLO [4,3-b]1,3,4-OXADIAZOLE, -1,3,4-THIADIAZOLE, -1,2,4-TRIAZOLE AND THEIR DERIVATIVES

Saundane. A.R*, Yarlakatti Manjunatha and Prabhaker Walmik.

Department of Postgraduate Studies and Research in Chemistry Gulbarga University, Gulbarga-585 106 Karnataka, India. e-mail-arsaundane@rediffmail.com

Abstract

Several 5-(2', 5'-disubstituted 1H- indol-3'-yl)-5H-thiazolo[4,3-b]1,2,4-triazoles (5) -1,3,4-thiadiazoles (6) and 1,3,4-oxadiazoles (7) and their analogues were synthesized. These compounds were screened for their antimicrobial activity.

INTRODUCTION

Indole and its derivatives have occupied a unique place in the chemistry of nitrogen heterocycles because of their wide spectrum of biological activities such as, anti-microbial¹, anti-inflammatory², anti-HIV³, anti-tubercular⁴, CNS dipressant⁵, etc. In addition, the indole nucleus is present in a number of physiologically significant compounds, e.g., serotonin isolated from blood serum⁶, indole 3-acetic acid (heteroxin) is naturally occurring plant growth hormone and reserpin is an indole alkaloid has been shown to be active in reducing the concentration of serotonin in central tissues⁷. Similarly, thiazole and its derivatives are found to be associated with various biological activities such as, antibacterial, antifungal and anti-inflammatory activities⁸. On the same line, 1,3,4-thiadiazoles, 1,2,4-triazoles and 1,3,4-oxadiazoles possesses wide spectrum of biological activities including anti-tuberculosis, anti-convolusent, anti-inflammatory, insecticidal, antifungal, analgesic and antiitumor properties⁹⁻¹⁶.

The above observations coupled with the view that, planarity and compactness of a molecule might augment its other biological activities. Encouraged by these investigations and considering the interesting pharmacological profile of these systems and in continuation of our research to synthesize bioactive molecule^{17,18}, it has been planned to synthesize a molecule which combines these two biolable ring systems together, viz., indole nucleus with thiazolotriazole, thiazolothiadiazole and thiazolooxadiazole to give a compact molecule which may act as a better pharmacophore. Hence, we report herein the synthesis of title compounds with the hope to achieve a compound of better biological activities.

RESULT AND DISCUSSION:

Starting compounds 5-substituted 2-(4-substituted phenyl)indole-3-carboxaldehydes (2) were obtained by treatment of 5-substituted 2-(4-substituted phenyl)indoles (1) with N.N-dimethyl formamide and phosphorus oxychloride complex (Vilsmeier reagent) following the literature procedure¹⁹ (Scheme-1). 2a (i.e., R = CI and $R' = CH_3$) on reaction with thiosemicarbazide in methanol containing catalytic amount of acetic acid at reflux temperature gave the corresponding thiosemicarbazone (3a) (Scheme-1). The structure of which has been established on the basis of its spectral data. Thus, its IR (KBr) spectrum exhibited the absorption peaks at 3400 and 3330 cm⁻¹ (doublet of unequal and medium intensities) due to NH₂ group of thiosemicarbazone moiety. The absorption peak at 3252 cm⁻¹ is attributed to indole NH, the peak at 3159 cm⁻¹ is appeared as broad but medium band due to the NH group of thiosemicarbazone residue, the absorption at 1591 cm⁻¹ is appeared due to C=N function, the sharp peak due to C=S group appeared at 1097 cm⁻¹ and no absorption in carbonyl region indicating the absence of aldehyde group. Its ¹H NMR spectrum revealed signals at δ 2.40 (s, 3H, p-CH₃), 7.07-7.48 (m, 7H, ArH), 7.8 (s, 2H, NH₂), 8.4 (s, 1H, CH=N), 11.0 (s, 1H, NH-CS) and 11.7 (s, 1H, indole NH). In its mass spectrum the isotopic molecular ion is appeared at m/e 342, 344. These data clearly supports the formation of thiosemicarbazone 3a from 2a. 3a on cyclocondensation with thioglycolic acid in presence of anhydrous zinc chloride as a catalyst using N. N-dimethyl formamide as solvent under reflux condition afforded the respective indolyl thiazolidinone (4a) (Scheme-1). The structure of this compound has been established on the basis of its spectral data. In IR (KBr) spectrum, it showed peaks at 3411 cm⁻¹ (broad medium due to NH₂), at 3215 and 3075 cm⁻¹ (broad medium due to NH groups), at 1607 and 1572 cm⁻¹ amide-I and amide-II bands, respectively, of cyclic amide and the C=S function appeared at 1094 cm⁻¹. The disappearance of a peak at 1591 cm⁻¹ due to C=N absorption and appearance of new peaks due to amide functionality supports the formation of 4a from 3a. Also its ¹H NMR spectrum exhibited signals at δ 2.39 (s, 3H, p-CH₃), 2.83 (s, 2H, S-CH₂-C=O), 7.09-7.38 (m, 8H, 7-ArH+S-CH-N), 8.38 (s, 2H, NH₂), 8.89 (s, 1H, NH) and 11.53 (s, 1H, indole NH). The mass spectrum of this compound exhibited isotopic molecular ion peak at m/e 416, 418.

Compounds 5a-g, 6a-g and 7a-g were obtained in good yields by intramolecular chemoselective heterocyclizition of 4a-g with NaOH, conc. H_2SO_4 and I_2/KI , respectively (Scheme-1). The structures of these compounds were conformed by their spectral studies. The compound 5a was conformed by disappearance of absorption peaks at 1607 cm⁻¹ and 1572 cm⁻¹ of amide carbonyl and appearance of new peaks at 3416 and 3216 cm⁻¹ (broad medium due to NH), the C=S absorption appeared at 1088 cm⁻¹ in its IR (KBr) spectrum. In its ¹H NMR spectrum signals at δ 2.48 (s, 3H, *p*-CH₃), 6.91-7.71 (m, 9H, CH-S-CH+7-ArH), 8.4 (s, 1H, NH), 9.04 (s, 1H, NH), 10.86 (s, 1H, indole NH). The signal at δ 2.83 (s, 21I, S-CH₂-C=O) of 4a disappeared and presence of new signals at δ 8.4 due to NH and 9.04 due to NH-C-NH conforms the formation of 5a from 4a. Further the mass spectrum of this compound exhibited isotopic molecular ion peak at m/e 398, 400.

Compound 6a in its IR (KBr) spectrum exhibited absorption peaks at 1610 cm⁻¹ due to C=N function of 1,3,4thiadiazole moiety and absorption at 3413 and 3219 cm⁻¹ appeared due to NH/NH₂ groups. In its ¹H NMR spectrum various protons were resonated at δ 2.43 (s, 3H, *p*-CH₃), 7.26-7.56 (m, 9H, CH-S-CH+7-ArH), 8.6 (s, 2H, NH₂), 10.91 (s, 1H, indole NH). The signals at δ 8.3 due to (s, 2H, NH₂) and at 2.83 due to (s, 2H, S-CH₂-C=O) of 4a were disappeared which conforms the formation of 6a from 4a. The mass spectrum of this compound exhibited isotopic molecular ion peak at m/e 398, 400.

The compound 7a exhibited in its IR (KBr) spectrum absorption at 3420, 3383 cm⁻¹ (broad medium due to NH₂ and NH, respectively) and 1607 cm⁻¹ due to C=N function of 1,3,4-oxadiazole. The ¹H NMR spectrum showed signals at δ 2.13 (s, 3H, *p*-CH₃), 6.9-7.56 (m, 9H, CH-S-CH+7-ArH), 8.61 (s, 2H, NH₂) and 10.96 (s, 1H, indole NH).

The mass spectrum of this compound exhibited isotopic molecular ion peak at m/e 382, 384. Thus the formation of 7a from 4a was conformed.

All the spectral data of the synthesized compounds were given in table-2.

Antimicrobial activity:

All the newly synthesized compounds (3-7) were evaluated for their antibacterial and antifungal activities by cup-plate method at a concentration 1mg/ml following reported procedure²⁰. The zone of inhibition was compared with the standard gentamycin and flucanozole for antibacterial and antifungal activity, respectively. The investigation of antibacterial screening revealed that, all the compounds exhibited moderate to good zone of inhibition against *Staphylococcus aureus*, *Pseudomonos aeruginosa* and *Klebsella pneumonia*. Compounds **4b**, **6c** and **6e** showed good activity against *P.aeruginosa*, compound **4e**, **4f**, **4g**, **5c**, **6f** and **7c** exhibited good activity against *K.Pneumonia* and compound **3b**, **4b**, **4e**, **5c**, **6c** and **7c** showed good inhibition against *S.Aureus*. In antifungal screening, compounds **4d**, **4f**, **7e** and **7g** exhibited maximum zone of inhibition against *Aspergillus oryzae*, compounds **3e**, **3f**, **4e**, **6e**, **6f** and **6g** showed good activity against *Aspergillus terrus* and compounds **3e**, **3f**, **3g**, **4e**, **4f**, **5d**, **7e** and **7f** exhibited good activity against *Aspergillus terrus* and compounds **3e**, **3f**, **3g**, **4e**, **4f**, **5d**, **7e** and **7f** exhibited good activity against *Aspergillus niger*.

Experimental section:

All the reagents were obtained commercially and used with further purification. Melting points were determined by an open capillary method and are uncorrected. The IR spectra (KBr) were recorded with a Perkin-Elmer spectrum one FTIR spectrometer. The ¹H NMR spectra were recorded (CDCl₃+DMSO) with an AMX-400AV III solids NMR. The chemical shifts were expressed in ppm (δ -scale) downfield from TMS. Mass spectra were recorded with a 2010A Data Report-Shimadzu. Elemental analysis carried out using Flash EA 1112 series elementar analyzer.

Preparation of 2-phenyl indole 3-carboxaldehyde (2a-g):

These compounds were prepared by following literature procedure¹⁹.

Preparation of thiosemicarbazone (3a-g):

To a solution of 2 (0.01 mole) and thiosemicarbazide (0.01 mole) in methanol (20 ml), few drops of acetic acid were added and the mixture refluxed for 5 hrs. At the end of this period, the solution was cooled to room temperature and poured into ice cold water, then neutralized with solid NaHCO₃, the separated solid was filtered and dried to obtain (2a-g). The crude products were recrystallized from ethanol. Physical data were tabulated in table 1.

Preparation of 1-[2-(2,5-disubstituted-1H-indol-3-yl)-4-oxothiazolidin-3-yl]thiourea (4a-g):

Thiosemicarbazone 3 (0.01 mole) was refluxed in DMF (30 ml) containing a pinch of anhydrous zinc chloride and thioglycolic acid (0.01 mol) for 8 hrs. The mixture was cooled and poured into ice cold water, the separated solid was filtered, washed with water and recrystallized from ethanol. Physical data were tabulated in table 1.

Preparation of 2-amino-(2', 5'-substituted -1H-indol-3'-yl)-5H-thiazolo[4,3-b]1,3,4-oxadiazole (7a-g):

To a solution of 1-[2-(2,5-disubstituted-1H-indol-3-yl)-4-oxothiazolidin-3-yl]thiourea, 4 (0.01 mole) in ethanol (10 ml), NaOH (8 ml, 2N) was added followed by the addition of I_2 in KI solution (5%) till permanent tinge of iodine persisted. The reaction mixture was refluxed for 2 hrs, cooled to room temperature and poured into ice cold water. The desired product thus obtained was filtered, washed with water and recrystallized from ethanol. Physical data were tabulated in table 1.

Preparation of 2-amino 5'-(2', 5'-substituted-1H-indol-3'-yl)-5H-thiazolo[4,3-b]-1,3,4-thiadiazole (6a-g):

To a solution of 1-[2-(2,5-disubstituted-1H-indol-3-yl)-4-oxothiazolidin-3-yl]thiourea 4 (0.01 mole) in ethanol (10 ml), concentrated sulphuric acid (8 ml) was added drop wise with stirring in an ice bath at $0-2^{\circ}$ C. After 45 min. the reaction mixture was poured into ice cold water and then neutralized with ammonia solution. The product thus separated was filtered, washed with water, dried and recrystallized from ethanol. Physical data were tabulated in table 1.

Preparation of 5-(2', 5'-substituted-1H-indol-3'-yl)-2-mercapto-1,5-dihydrothiazolo [3,4-b]-1,2,4-triazole (5a-g):

1-[2-(2,5-disubstituted-1H-indol-3-yl)-4-oxothiazolidin-3-yl]thiourea 4 (0.01 mole) was dissolved in NaOH (2N, 10 ml) and ethanol (5 ml). The reaction mixture was refluxed for 8 hrs. The resulting mixture was cooled and poured on to crushed ice, on acidification with dil.HCl gave the crude product which was filtered, washed with water, dried and recrystallized from ethanol. Physical data were tabulated in table 1.

REFERENCES:

- 1. a). A. K. Sen Gupta, A. A. Gupta, *Indian J. Chem*, 22B, 263, (1983).
 - b). M. A. Radwan, E. A. Ragab, N. M. Sabry, S. M. El-Shenaway, Bioorg. Med. Chem, 15, 3832, (2007).
- 2. a).M. Bhalla, V. K. Srivastava, T. N. Bhalla, K. Shankar, Arzneim Forssch, 43, 595, (1993).
 - b). E. Bansal, V. K. Srivatsava, A. Kumar, Indian J. Chem, 39B, 357, (2000).
 - c). U. Misra, A. Hitkar, A. K. Saxena, S. Gurtu, K. Shanker, European J. Med. Chem, 31, 629, (1996).
 - d). Preeti Rani, V. K. Srivastava, Ashok kumar, Eurpean J. Med. Chem, 39, 449, (2004).
- T. M. William, T. M. Ciccarone, S. C. Mac Tough, C. S. Rooney, S. K. Balan, J. H. Condra, E. A. Emini, M. F. Goldman, W. T. Greenlee, L. R. Kauffman, J. A. O'Brein, V. V. Sardana, W. A. Scheleif, A. D. Theonarides, P. S. Anderson, J. Med. Chem, 36(9), 1291, (1993).
- 4. S. P. Hiremath, A. C. Bajji, J. S. Biradar, Indian J. Chem, 28B, 824, (1989).
- 5. R. Agarwal, C. Agarwal, P. Kumar, Pharm. Res. Commn, 16, 83, (1984).
- a). A. H. Amin, T. B. Cratord, J. H. Gaddum, J. Physiol, 126, 596, (1954).
 b). D.W.Wooley, E. Shaw, Science, 119, 587, (1954).
- 7. P. A. Shore, A. Dictcher, E. G. Tomich, A. Grolsson, R. Kunthzmann, B. B. Barodie, Am. New York. Acad. Sci, 66, 609, (1957).
- 8. a). N.Hans, Swiss Patent 592103, (1977). Chem. Abstr, 88, 22886, (1978).
 - b). K. J. Wilson, C. R. Utig, N. Subasinge, J. B. Hoffman, N. J. Rudolph, R. Soll, C. J. Mollus, R. Bone, D. Green, J. Randall, *Bioorg. Med. Chem. Lett*, 11, 915, (2001).
 - c). K. D. Berlin, M. D. Hard, Prov. Olka. Acad. Sci, 71, 29, (1991).
 - d). P.K.Sharma, S. N. Swoney, A. Gupta, G. B. Singh, S. Bani, Indian J. Chem, 37B, 371, (1998).
- 9. Meenakshi Shrimali, Reena Kalsi, Renu Shah, K. S. Dixit, C. Nath, P. J. Barthwal, *Indian J. Chem*, **29B**, 85, (1990).
- 10. Zang Zy, L. M. Chen, Chem. J. Chinese Univ, 2, 50, (1981).
- 11. C. B. Chapleo, P. L. Myers, A. C. B. Smith, M. R. Stillings, I. F. Tulloch, D. S. Walter, J. Med. Chem, 31, 7, (1988).
- 12. Z. K. Abid E-Samii, Zhonghua Yaoxue Zazhi, 43, 245, (1991).
- 13. J. P. Idoux, K. S. Gibbs-Rein, J. J. Gupton, G. N. Cunningham, J. Chem. Eng. Data, 33, 385, (1988).
- 14. A. B. A. Ghattas, M. Abdel-Rahman, M. J. El-Wassim, G. A. El-Saraf., Rev. Roun. Chim, 34, 1989, (1987).
- 15. F. Chemence, C. Joliveacl-Maushart, J. Meier, J. Cerede, F. Delevallae, J. Benzoni, R. Deraert, *European J. Med. Chem*, 20, 257, (1985).
- 16. M. Miyahara, M. Nakadate, S. Sueyoshi, M. Tanno, M. Miyahara, S. Kamiya, Chem. Pharm. Bull, 30, 4402, (1989).
- 17. S. P. Hiremath, K. Rudresh, A. R. Saundane, Indian .J. Chem, 41B, 394, (2002).
- 18. A. R. Saundane, P. M. Veeresh Sharma, Indian J. Heterocyclic Chem, 13, 275, (2004).
- 19. S. P. Hiremath, J. S. Biradar, M. G. Purohit, Indian J. Chem, 21B, 249, (1982).
- 20. Indian Pharmacopoeia, Government of India, 3rd Ed., New Delhi, Appendix IV, 90, (1985).

Received on December 10, 2008

Comp.	Substi	tution	Molecular	Yield	M.P	Elemental Analysis. Calculated(found)		
No	R	R'	formula	(%)	(⁰ C)	С	Н	N
3a	Cl	CH3	C ₁₇ H ₁₅ N₄CIS	61	258-60	59.56(59.59)	4.41(4.40)	16.34(16.33)
3b	Cl	Cl	$C_{16}H_{12}N_4Cl_2S$	71	238-40	52.90(52.88)	3.33(3.29)	15.42(15.48)
3c	Н	CH ₃	C ₁₇ H ₁₆ N ₄ S	68	244-46	66.24(66.30)	5.23(5.29)	18.17(18.15)
3d	Н	Cl	C ₁₆ H ₁₃ N ₄ ClS	66	210-14	58.44(58.43)	3.98(3.40)	17.04(17.00)
3e	Cl	Н	C ₁₆ H ₁₃ N ₄ CIS	63	249-50	58.44(58.50)	3.98(3.87)	17.04(16.98)
3f	CH ₃	Н	C ₁₇ H ₁₆ N ₄ S	79	255-56	66.24(66.28)	5.23(5.18)	18.17(18.18)
3g	Н	Н	C ₁₆ H ₁₄ N ₄ S	73	220-22	65.28(65.25)	4.79(4.83)	19.03(19.15)
4a	Cl	CH ₃	C ₁₉ H ₁₇ N ₄ OClS ₂	66	140-42	54.73(54.60)	4.11(4.23)	13.44(13.25)
4b	Cl	Cl	$C_{18}H_{14}N_4OCl_2S_2$	68	120-24	49.43(49.32)	3.23(3.19)	12.81(12.85)
_4c	Н	CH ₃	C ₁₉ H ₁₈ NOS ₂	66	180-85	59.66(59.32)	4.74(4.69)	14.65(14.51)
<u>4</u> d	Н	Cl	C ₁₈ H ₁₅ N ₄ OClS ₂	70	210-13	53.66(53.59)	3.75(3.82)	13.91(14.03)
<u>4e</u>	Cl	Н	$C_{18}H_{15}N_4OClS_2$	63	220-22	53.66(53.62)	3.75(3.90)	13.91(13.95)
4f	CH ₃	Н	C ₁₉ H ₁₈ NOS ₂	71.	93-96	59.66(59.78)	4.74(4.92)	14.65(14.86)
4g	Н	Н	$C_{18}H_{16}N_4OS_2$	69	235-39	58.67(58.72)	4.38(4.29)	15.21(15.29)
<u>5a</u>	Cl	CH ₃	$C_{19}H_{15}N_4ClS_2$	65	118-21	57.20(57.32)	3.79(3.96)	14.04(14.20)
5b	Cl	Cl	$C_{18}H_{12}N_4Cl_2S_2$	63	185-88	51.55(51.35)	2.88(2.76)	13.36(13.41)
5c	Н	CH₃	$C_{19}H_{16}N_4S_2$	66	165-68	62.61(62.56)	4.42(4.51)	15.37(15.29)
5d	Н	Cl	$C_{18}H_{13}N_4ClS_2$	64	186-87	56.17(56.09)	3.40(3.38)	14.56(14.61)
5e	Cl	Н	$C_{18}H_{13}N_4ClS_2$	60	250-52	56.17(56.29)	3.40(3.45)	14.56(14.49)
<u>5f</u>	CH ₃	Н	$C_{19}H_{16}N_4S_2$	54	120-23	62.61(62.53)	4.42(4.38)	15.37(15.26)
5g	Н	Н	$C_{18}H_{13}N_4S_2$	· 65	193-95	61.69(61.82)	4.03(4.29)	15.99(16.12)
6a	Cl	CH3	$C_{19}H_{15}N_4ClS_2$	71	240-42	57.20(57.32)	3.79(3.96)	14.04(13.95)
6b	Cl	Cl	$C_{18}H_{12}N_4Cl_2S_2$	66	166-68	51.55(51.32)	2.88(2.96)	13.36(13.42)
<u>6</u> c	Н	СН₃	$C_{19}H_{16}N_4S_2$	67	213-15	62.61(62.32)	4.42(4.29)	15.37(15.43)
6d	H	Cl	$C_{18}H_{13}N_4ClS_2$	69	201-03	56.17(56.06)	3.40(3.52)	14.56(14.62)
<u>6e</u>	Cl	Н	$C_{18}H_{13}N_4ClS_2$	64	116-20	56.17(56.08)	3.40(3.29)	14.56(14.48)
<u>6</u> f	CH ₃	Н	$C_{19}H_{16}N_4S_2$	68	183-85	62.61(62.32)	4.42(4.52)	15.37(15.45)
6g	Н	Н	$C_{18}H_{14}N_4S_2$	61	160-63	61.69(61.72)	4.03(4.23)	15.99(16.09)
7a	Cl	CH ₃	$C_{19}H_{15}N_4ClS_2$	68	282-85	59.60(59.20)	3.95(4.23)	14.63(14.49)
7b	Cl	Cl	$C_{18}H_{12}N_4OCl_2S_2$	68	210-13	53.61(53.35)	3.00(3.25)	13.89(13.68)
7c	H	CH ₃	$C_{19}H_{16}N_4OS_2$	61	233-36	65.50(65.80)	4.63(4.71)	16.08(16.23)
7d	Н	Cl	C ₁₈ H ₁₃ N ₄ OClS ₂	70	261-63	58.61(58.38)	3.55(3.60)	15.19(15.08)
7e	Cl	Н	$C_{18}H_{13}N_4OCIS_2$	61	128-30	58.61(58.39)	3.55(3.72)	15.19(15.23)
7f	CH3	Н	$C_{19}H_{16}N_4OS_2$	65	120-24	65.50(65.86)	4.63(4.72)	16.08(15.95)
7g	Н	H	$C_{18}H_{14}N_4OS_2$	69	238-39	64.65(64.36)	4.22(4.39)	16.75(19.98)

Table-1: Physical data of compounds (3-7):

Table-2: Spectral data of compounds (3-7):

Comp	IR(KBr) cm ⁻¹	¹ HNMR (CDCl ₃ +DMSO) δ ppm	MS m/z[M ⁺]	
	3400(NH ₂), 3330(NH), 3252	2.40 (s, 3H, p-CH ₃), 7.07-7.48 (m, 7H, ArH), 7.8 (s, 2H, CS-		
3a	(NH), 3159(NH),	NH ₂), 8.4 (s, 1H, CH=N-N-), 11.01 (s, 1H, N-NH-CS), 11.7	344[M ⁺ +2]	
	1591(C=N), 1097 (C=S).	(s, 1H, indole NH).		
3Ъ	3423 (NH ₂), 3372 (NH),	6.95-7. 40 (m, 7H, Ar H), 7.72 (s, 2H, CS-NH ₂), 8.16 (s, 1H,		
	3265 (NH), 1597 (C=N),	CH=N-N-), 10.45 (s, 1H, N-NH-CS), 11.09 (s, 1H, indole	364 [M ⁺ +4]	
	1105 (C=S).	NH).		
3c	3450(NH ₂), 3379 (NH), 3274	2.31(s, 3H, p-CH ₃), 6.93-7.35 (m, 8H, ArH), 7.69 (s, 2H,		
	(NH), 1602 (NH), 1110	CS-NH ₂), 8.1 (s, 1H, CH=N-N-), 10.4 (s, 1H, N-NH-CS),	309 [M⁺]	
	(C=S).	10.92 (s, 1H, indole NH).		
	3436 (NH ₂), 3365 (NH),	7.01-7.49 (m, 8H, Ar H), 7.72 (s, 2H, CS-NH ₂), 8.13 (s, 1H,		
3d	3269 (NH), 1615(NH), 1110	CH=N-N-), 10.39 (s, 1H, N-NH-CS), 10.92 (s, 1H, indole	330 [M ⁺ +2]	
	(C=S).	NH)		
}	3429 (NH ₂), 3381 (NH),	6.87-7.34 (m, 8H, Ar H), 7.82 (s, 2H, CS-NH ₂), 8.12 (s, 1H,		
3e	3278 (NH), 1591 (C=N),	CH=N-N-), 10.6 (s, 1H, N-NH-CS), 11.12 (s, 1H, indole	330 M ⁺ +2]	
	1091 (C=S).	NH).		
	3445 (NH ₂), 3355 (NH),	2.1(s, 3H, 5-CH ₃), 7.09-7.48 (m, 8H, ArH), 7.59 (s, 2H, CS-		
3f	3256 (NH), 1601(C=N),	NH ₂), 8.21(s, 1H, CH=N-N-), 10.41 (s, 1H, N-NH-CS),	309 [M⁺]	
	1101(C=S).	10.98 (s, 1H, indole NH).		
	3449 (NH ₂), 3356 (NH),	7.01-7.4 (m, 9H, Ar H), 7.71 (s, 2H, CS-NH ₂), 8.29 (s, 1H,		
3g	3279 (NH), 1605(C=N),	CH=N-N-), 10.39 (s, 1H, N-NH-CS), 11.02 (s, 1H, indole	295 [M ⁺]	
	1098 (C=S).	NH)		
	3411 (NH ₂), 3215 (NH),	2.39 (s, 3H, <i>p</i> -CH ₃), 2.83 (s, 2H, CO-CH ₂ -S), 7.09-7.38 (m,	•	
4a	3075 (NH), 1607 (N-C=O),	711, ArH), 8.37 (s, 1H, S-CH-N), 8.38 (s, 1H, S-CH-N), 8.89	418M ⁺ +2]	
·	1591 (C=S).	$(s, 2H, NH_2), 11.51 (s, 1H, indole NH).$	· · · · · · · · · · · · · · · · · · ·	
	3415 (NH ₂), 3225 (NH),	2.84 (s, 2H, CO-CH ₂ -S), 7.01-7.41 (m, 7H, ArH), 8.37 (s,	and the state of	
46	3115 (NH), 1605 (N-C=O),	1H, S-CH-N), 8.87 (s, 2H, NH ₂), 9.89 (s, 1H, NH), 10.96 (s,	441 [M ⁺ 4]	
	1104 (C=S).	IH, indole NH).		
	3419 (NH ₂), 3224 (NH),	2.11 (s, 3H, p -CH ₃), 2.84 (s, 2H, CO-CH ₂ -S), 7.03-7.45 (m,		
40	3118 (NH), 1603 (N-C=O),	8H, ArH), 8.38 (s, 1H, S-CH-N), 8.88 (s, 2H, NH_2), 9.87 (s,	383 [M]	
	1098 (C=S).	1H, NH), 10.86 (s, 1H, indole NH).		
4d	3422 (NH ₂), 3225 (NH),	2.81 (s, 2H, CO-CH ₂ -S), $6.97-7.35$ (m, 8H, ArH), 8.36 (s,	404544 101	
	1 3115 (NH), 1610 (N-C=O),	1H, S-CH-N), 8.91 (s , 2H, NH ₂), 9.89 (s , 1H, NH), 10.98 (s ,	404[M +2]	
	1109 (C=S).	$\begin{array}{c} 1H, \text{ indole NH} \\ 2R(-2H, CO, CH, S) = 7.02 = 7.50 (m, 8H, A, H) = 8.4 (m, 1) \\ \end{array}$		
4e	3414 (NH ₂), 3223 (NH),	2.8 (s, 2H, CO-CH ₂ -S), 7.03-7.59 (m, 8H, ArH), 8.4 (s, 1H, $(s, 2H, NH)$) 0.05 (c, 2H, NH)) 0.05 (c, 2H, NH)) 0.05 (c, 2H, NH)) 0.05 (c, 2H, NH)) 0.05 (c, 2H, NH)	404044 (2)	
	3110 (NH), 1608 (N-C=O),	S-CH-N), 8.9 (s, 2H, NH ₂), 9.89 (s, 1H, NH), 10.95 (s, 1H,	404[M +2]	
4f	1098 (C=S)			
	3429 (NH ₂), 3219 (NH),	2.19 (S, 511, 5-CH ₃), 2.81 (S, 2H, CO-CH ₂ -S), 7.02-7.30 (M,	202 F M4+ 1	
	1005 (C=S)	(3, -11), $(3, 27)$ (3, (11) , $(3, -17)$, $(3, 27)$, $(3, 27)$, (11) ,	202 [191]	
4g	2427 (NH) 2226 (NH)	111, $N(T)$, 10.91 (5, 111, $IIIQOJE (N(T))$.		
	3427 (NT2), 3220 (NF1), 3117 (NU) 1607 (N C-O)	2.07 (s, 2Π , $UU-U\Pi_2^{-3}$), $1.00-1.47$ (III, 9Π , AIII), 8.32 (s, 111 S CU N) 9.92 (a 211 NUL) 0.99 (a 111 NUL) 10.04 (a	260 [M ⁺]	
	1000 (C-S)	$[111, 3-511-19], 0.02 (S, 2\Pi, 19\Pi_2), 9.00 (S, 1\Pi, 19\Pi), 10.94 (S, 111), 10.$	[זאן 200	
	LIV77 (C~3).	111, IIIUOIC INFIJ.		

5a	3416 (NH), 3216 (NH),	2.48 (s, 3H, p-CH ₃), 6.91-7.71 (m, 9H, 7-ArH, CH-S-CH), 8.4 (s, 1H, NH) 9.04 (s, 1H, NH) 10.86 (s, 1H, indole NH)	400 [M ⁺ +2]	
	3380 (NH) 3145 (NH) 1079	6.4(3, 111, 111), 9.04(3, 111, 111) 10.00(3, 111, 110) (3, 111).		
50	(C=S).	9.01(s, 1H, SH) 11.15 (s, 1H, indole NH).	423 [M ⁺ +4]	
5c	3382 (NH), 3149 (NH), 1085	2.19 (s, 3H, p-CH ₃), 6.97-7.51 (m, 10H, 8-ArH, CH-S-CH),		
	(C=S).	8.72 (s, 1H, NH), 9.02 (s, 1H, SH) 10.97 (s, 1H, indole NH).	365 [M]	
5d	3386 (NH), 3146 (NH), 1087	6.98-7.48(m, 10H, 8-ArH, CH-S-CH), 8.76 (s, 1H, NH), 9.03	2001241-01	
	(C=S).	(s, 1H, SH), 11.04 (s, 1H, indole NH).	386 [M +2]	
5e	3383 (NH), 3142 (NH),	6.96-7.53 (m, 10H, 8-ArH, CH-S-CH), 8.31 (s, 1H, NH) 8.82	296 [M ⁺ 12]	
	1049 (C=S).	(s, 1H, NH), 11.15 (s, 1H, indole NH).	500 [WI +2]	
5f	3387 (NH), 3148 (NH), 1101	2.24 (s; 3H, 5-CH ₃), 6.99-7.41 (m, 10H, 8-ArH, CH-S-CH),), 365 [M ⁺]	
	(C=S).	8.73 (s, 1H, NH), 9.03 (s, 1H, SH), 10.93 (s, 1H, indole NH).	le NH).	
5g	3384 (NH), 3140 (NH), 1097	7.03-7.52(m, 11H, 9-ArH, CH-S-CH), 8.69 (s, 1H, NH), 9.01	251 [M ⁺]	
	(C=S).	(s, 1H, SH), 10.95 (s, 1H, indole NH).	221 [IAT]	
6a	3413 (NH ₂), 3219 (NH),	2.43 (s, 3H, p-CH ₃), 7.26-7.56 (m, 9H, 7- ArH, CH-S-CH),	400 [M ⁺ +2]	
	1610 (C=N)	8.6 (s, 2H, NH ₂), 10.91 (s, 1H, indole NH).	400 [M +2]	
6b	3382 (NH ₂), 2916 (NH),	7.16-7.54 (m, 9H, 7- ArH, CH-S-CH), 8.61(s, 2H, NH ₂),	122 [M++4]	
	1619 (C=N)	10.86 (s, 1H, indole NH).		
6c	3380 (NH ₂), 2945 (NH),	2.14 (s, 3H, p-CH ₃), 7.09-7.51 (m, 10H, 8- ArH, CH-S-CH),	365 [M ⁺]	
 	1610(C=N)	8.60(s, 2H, NH ₂), 10.84 (s, 1H, indole NH).	505[11]	
6d	3381 (NH ₂), 2949 (NH),	7.11-7.49 (m, 10H, 8-ArH, CH-S-CH), 8.62(s, 2H, NH ₂),	386 [M ⁺ +2]	
	1613 (C=N)	10.91 (s, 1H, indole NH).		
6e	3383 (NH ₂), 2916 (NH),	6.93-7.51 (m, 10H, ArH), 8.8 (s, 2H, NH ₂), 11.17 (s, 1H,	386 [M ⁺ +2]	
	1616 (C=N)	indole NH).		
6 f	3385 (NH ₂), 2948 (NH),	2.13 (s, 3H, 5-CH ₃), 7.06-7.52 (m, 10H, 8- ArH, CH-S-CH),	365 [M⁺]	
	1615 (C=N)	8.60 (s , 2H, NH ₂), 10.82 (s , 1H, indole NH).		
6g	3384 (NH ₂), 2946 (NH),	7.10-7.51 (m, 11H, 9-ArH, CH-S-CH), 8.61(s, 2H, NH ₂),	351 ſ M⁺1	
	1612 (C=N).	10.80 (s, 1H, indole NH).		
7 a	3420 (NH ₂), 3383 (NH),	2.13 (s, 3H, <i>p</i> -CH ₃), 6.9-7.56 (<i>m</i> , 9H, 7-ArH, CH-S-CH),	384 [M ⁺ +2]	
	1607 (C=N).	$8.61 (s, 2H, NH_2), 10.06 (s, 1H, indole NH).$		
7b	3425 (NH ₂), 3380 (NH),	6.97-7.50 (<i>m</i> , 9H, 7-ArH, CH-S-CH), 8.51 (<i>s</i> , 2H, NH ₂),	407 [M ⁺ +4]	
<u> </u>	1610 (C=N).	10.46 (s, 1H, indole NH).		
7c	$3416 (NH_2), 3376 (NH),$	2.12 (s, 3H, <i>p</i> -CH ₃), 6.99-7.46 (<i>m</i> , 10H, 8-ArH, CH-S-CH),	349 [M⁺]	
	1612 (C=N).	8.54 (s, 2H, NH ₂), 10.41 (s, 1H, indole NH).		
70	3424 (NH ₂), 3371 (NH),	7.01-7.51 (m, 10H, 8-ArH, CH-S-CH), 8.50(s, 2H, NH_2),	370 [M ⁺ +2]	
	1609 (C=N).	10.78 (s, 1H, indole NH).		
/e	$3383 (NH_2), 2900 (NH),$	6.93-7.51 (<i>m</i> , 10H, ArH), 8.54 (<i>s</i> , 2H, NH ₂), 10.86 (<i>s</i> , 1H,	370 [M ⁺ +2]	
76	1010 (C=N).			
	3429 (NH ₂), 3374 (NH),	2.15 (S, 3H, 5-CH ₃), 7.10-7.35 (<i>m</i> , 10H, 8- AIH, CH-S-CH),	349 [M⁺]	
7	2428 OUL) 2270 OUL)	7.02, 7.52 (m, 1111, 0, Arth CU S CU), 9.51 (c, 211, NH)		
/g	$3428 (NH_2), 3370 (NH),$	7.02-7.52 (<i>m</i> , 11H, 9- AFH, CH-S-CH), 8.51 (S, 2H, NH ₂),	335 [M ⁺]	
1	1 IVII (C-N).	1 IV. $($ $($ $)$, III, IIIQUE IVII).	1	